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COMMENT 

On three-dimensional elastic percolation networks with 
bond-bending forces 

Sepehr Arbabi and Muhammad Sahimi 
Department of Chemical Engineering, University of Southern California, Los Angles, 
CA 90089-1211, USA 

Received 14 June 1989, in final form 30 January 1990 

Abstract. This is a comment on a recent paper by Jian Wang regarding the elastic energy 
of three-dimensional percolation networks with bond-bending forces. We give the details 
of the elastic energy that was used in our recent simulation of such systems and show that, 
contrary to Wang’s claim, for a simple cubic network used in our study, our elastic energy 
is equivalent to that given by him, and is rotationally invariant. From the elastic energy 
of the system we also derive a rotationally invariant continuum representation of the system. 
The relation between this model and several other models that have previously been 
developed for studying elastic properties of disordered media is also clarified. 

Elastic percolation models with various microscopic force laws have recently received 
considerable attention [l]. The central force (CF) [2] and the bond-bending (BB) 
models [3] are the two elastic percolation models which have been extensively studied 
in two dimensions [4-61, while the study of these two models in three dimensions has 
been very limited. In general, the elastic Hamiltonian of such systems is given by 

where U,  is the displacement of site i, and R ,  a unit vector from i t o j .  Here, g ,  is a 
random variable which takes a non-zero value or 0 with probabilities p and 1-p, 
respectively, and essentially represents the elastic constant of the bond ij, and (Y and 
P denote the CF  and the BB force constants, respectively. The angular (or BB) force 
between occupied bonds i j  and ik are given in terms of the change in the angle se,,, 
at site i. 

Near the percolation threshold p c  the elastic moduli Y of the network obey the 
scaling law, Y - ( p  -pcjf, where f is a critical exponent. The most accurate numerical 
simulation of the BB model in two dimensions has yielded [5] f = 3.96 * 0.04, which 
totally supports the scaling relation [7, 81 

f = t+2v  (2) 
between f and the critical exponent t which describes the conductivity U of the network 
near p c ,  U - ( p  - p c ) ‘ ,  where v is the exponent of correlation length &, of percolation, 
6, - ( p  - p , ) - ” ;  for two-dimensional systems one has t = 1.3 and v = 4/3. While earlier 
numerical simulations [9] had indicated that f = 1.45 for the CF  model in two 
dimensions, more recent and extensive simulations [ 10, 1 1 3  have strongly suggested 
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that f- 3.9 for the CF model in two dimensions, so that, as far as Y is concerned, the 
CF and BB models may belong to the same universality class in two dimensions. The 
situation for three-dimensional systems is not yet clear. Our recent large scale Monte 
Carlo simulations of the BB model in three dimensions [ 121 yielded f- 3.78, which 
completely supports equation (2), where t (  d = 3) = 2 and v(d = 3) = 0.88. However, 
in a recent letter Wang [ 131 discussed the BB model in three dimensions and presented 
a rotationally invariant expression for 8 e J l k ,  on which basis he claimed that the model 
which we used in our computer simulations [ 121 in three dimensions does not actually 
represent a true BB model, because our expression for 8 e J I k  was claimed to be non- 
rotationally invariant. 

The purpose of this comment is to give the details of the elastic Hamiltonian that 
we used in our simulations [12] and show that, for a simple cubic network, it is 
equivalent to that given by Wang [13]. We then use our discrete elastic Hamiltonian 
and derive a rotationally invariant continuum representation for our system. The 
relation between this BB model and several other models of disordered elastic solids 
is then clarified. 

In order to calculate the nodal displacements ul, one has to take into account the 
contributions to U,  of all bonds and all pairs of bonds in which i is a node of at least 
one of the bonds. One then determines the elastic energy H and minimises it with 
respect to U,  for every node i. Thus, one has to write down the equation of motion 
(EOM),  d H / a u ,  = 0 for every i. Minimisation of the first sum on the right side of 
equation ( 1 )  with respect to U,  is straightforward and needs no explanation. However, 
the precise form of the second sum on the right side of equation (1) (the contribution 
of the BB forces) involves a pair of bonds and does require some explanation. In our 
simulations [ 121, for the BB term of equation ( l ) ,  we considered two types of contribu- 
tions, one coming from a pair of bonds in which i is the centre of the pair of bonds, 
and the other coming from a pair of bonds in which i is the end node of one of the 
bonds. This means that, for any i, the set of all bonds that have to be considered in 
the EOM is that shown in figure (1). For p = 1 ,  there are some clusters which can be 
deformed without any cost to the elastic energy. This is caused by the symmetry of 
the network. However, as p + p c ,  this symmetry is destroyed, and the deformation of 
any cluster of bonds, and the change in the angle between any pair of bonds costs 
some elastic energy. Therefore, the percolation threshold of our model coincides with 
that of ordinary percolation, p c  -- 0.25 for a simple cubic network (see also below). 
We now show that our elastic Hamiltonian is identical to that proposed by Wang [ 131 
in the special limit of a simple cubic network. 

Wang [ 131 has presented an expression for 86Jjk which, in our notation, is given by 

( u ~ ~ x R i ~ - U i k X R i k ) ( R y X R l k ) / t R ~ j X R i k ~  R,J not ( 1  to Rik (3a)  
+ U i k )  RrjI 11 to Rlk (36) 

(8e,ik>2 = ~(UIJ R, - uik Rik)12 (4) 

86Jzk = 

where U ,  = U,  - uJ, whereas we had used [ 121 

for the case when R, is not parallel to Rlk;  when R, is parallel to Rlk, our equation 
is identical to Wang’s. In a simple cubic network, any two bonds are either perpen- 
dicular to each other, or are parallel with one another. Clearly, for the perpendicular 
bonds, IR, X R,kl = 1. Now consider the EOM, aHlau,  =0, in the x direction. Let 
U,  = ( u x ,  U,, U,) be the displacement vector for site i of the lattice. The location of i 
is identified by the indices 1, m and n. We only consider the contribution of BE forces 
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Figure 1. The set of all bonds that contribute to the determination of the displacement ui 
of node i. 
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Figure 2. Young’s modulus Y and shear modulus p of a simple cubic network with L = 20 
against the fraction p of active springs. 
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in the cluster of figure (2), i.e., 8(t8J,k) ' /8uX,  since the contribution of CF is straightfor- 
ward and unambiguous. If we expand Wang's expression, equation ( 3 a ) ,  to determine 
the contribution of BB forces to the EOM, we obtain, for a simple cubic lattice 
8(se, lk)2/au,  = p ( u l + l , m + l , n  - U I - l . m - l . n  - U 1 - l . m + l , n  - U l + l . m - l . n  

V Y Y + Ui+lqm*n+L 

+ U I - l , m , n - l  - U I - l , m , n + l  - U;l,m,n-l +4uf;m+l,n + 4 u j ; m - l . n  

+4, , j ;m,n+I  + 4 u f ; m . n - l  - 
z z 

16~f;"~").  ( 5 )  

On the other hand, for a pair of bonds in which i is the central node we used [12], 
se,,, = I(  U, x R, - u,k x &)I, whereas for the pair of bonds in which i is the end node, 
we used 68,k = I ( U , ~  x R,, - u,k x R,k)l, keeping in mind that for this pair of bonds j is 
the central node. These configurations together make a contribution to the EOM which 
is identical to equation (5), i.e., Wang's expression. When the angle between the two 
bonds is 180°, we used a similar treatment. If i is the central node of the pair of bonds, 
se,zk = I(u,, x RI, - u,k x = I(u,, + u,k) x R,I (since R, = -&), which is equivalent to 
equation ( 3 6 ) .  Likewise, if i is the end node of one of the bonds, then, se,,, = 

I ( U , ~  x R,I - q k  x = -R,k), which is again equivalent to 
equation ( 3 b ) ,  considering that j is the central node of the pair of the bonds. We 
agree with Wang [13] that equations ( 3 a )  and ( 3 b )  are the most general expressions 
for the change in the angle between a pair of bonds in a three-dimensional network 
(because for all two-dimensional networks, the vectors ( U ,  x R, - u,k x Rlk) and R, x Rlk 
are always parallel regardless of the type of the network, whereas the same is not 
generally true for three-dimensional networks). However, for the BB model in a simple 
cubic network his equations are equivalent to those we used in our work [ 121. 

We now derive a rotationally invariant continuum representation of the BB model 
that we used in our simulations [12]. We first consider a closely related system, the 
so-called Keating model [ 141, the Hamiltonian of which is given by 

= I ( U , ~  + U,k) x R,#l (since 

For every cluster of bonds in a simple cubic network equations ( 1 )  and (6) are identical, 
except that the bending of 180" (collinear) bonds is not allowed in equation ( 6 ) .  He 
and Thorpe [15] employed this model to study the percolation and elastic properties 
of glasses, although f was not estimated. Gazis et al [16] utilised a variation of the 
model (see below) in their study of surface elastic waves in various crystals, while 
Mindlin [17] used a somewhat similar model to study disordered systems comprised 
of unconsolidated spherical grains under hydrostatic pressure. Consider now the EOM 

in the x direction equation for the Keating model, which is given by (assuming 

( y ( U j ; + l . m , n  + Uf;l,m,n - 2uj;m.n ) + p ( u l + l , m + l , n  

g . ,  = g.  = 1 ) .  
IJ i k  9 

4' + U : - ' . m - l , n  - 4- + 
- U f v + l . m - l , n  + U;l,m,n+l + U;-l,m,n-l 

- U l ; t l , m . n - l  I , m + l , n  - U I - l , m , n - l  
z + 4u, 

(7)  
Equation (7) is valid for every node (except, possibly, for the boundary nodes) of a 
simple cubic lattice. This is precisely the equation that we used in our simulations 
[12], except that we also included the bending of collinear bonds. It is also identical 
to Wang's expression, for a simple cubic lattice, equation ( 3 a )  (compare equations 

+4uj;m-l.n +4Uj;m.n+l +4uj;m.n-l - 16uj;",") = 0. 



On 3~ elastic percolation networks 2215 

( 5 )  and (7)). A similar equation was used by Gazis et a1 [16], except that in their 
model there is also a CF between every site and its second-nearest-neighbour nodes. 
All terms of equation (7) can be expressed in terms of difference operators. Thus, 
using Taylor’s series, such difference operators can be expressed in terms of the partial 
derivatives of the continuous function u i ( x , y ,  z ) .  Then, if we assume that the 
wavelengths of deformations are much longer than the lattice constant a, all but the 
second derivatives of ui can be neglected. In the continuum limit, one obtains 

a’ uj 
axj 

(c,, - cI2 - 2 ~ ~ )  2 7 ej + C,[2V(V. U )  - V  x ( V  x U ) ] +  C12V(V * U )  = O  

where uj = U,, uy, U,, x, = x, y, z and e, are the corresponding unit vectors in the x, y 
and z directions. Here C,, = a / a ,  CI2 = 0 and C,= 4 P / n  are the usual elastic (LamC) 
constants of the lattice (in this case C, ,  is simply Young’s modulus since C,, = 0). If 
the CF between a neighbour and its second-nearest neighbour is not neglected, then 
C,  , = (a + 4y)/ a, CI2 = 2 y /  a and C, = 2( y + 2P)/ a, where y is the stretching force 
constant between a site and its second-nearest neighbours. In this case, one has to 
include in equation (7) the appropriate terms representing the CF between node i and 
its second-nearest neighbours. As already mentioned, the only difference between the 
Keating and BB models is that, in the former model the bending of collinear bonds is 
not allowed. However, the bending of such bonds can be represented as a CF between 
a site and its second-nearest neighbour. Therefore, equation (8) is equally applicable 
to the BB model, except that, for the simple cubic network, the coefficient CI2 would 
no longer be zero (although its value would be quite small). Clearly, equation (8) is 
rotationally invariant. 

We should point out that equation (8) is very similar to that used by Schwartz 
et a1 [18] in their study of vibrational modes in granular media (see equation (5) of 
[18]). The main difference between equation (8) and theirs is that, similar to Mindlin 
[ 171, they also included the torques that arise as a result of the rotation of two contacting 
particles with respect to each other. Moreover, they did not include a CF  between two 
contacting particles. Feng [ 191 has laready shown that the exponent f for this model 
in two dimensions is the same as that of the BB model, so that the inclusion of the 
torques does not change the scaling behaviour of the B B  model. 

Equation (8) is applicable to any percolation network in which the size L of the 
system is much larger than the correlation length 6, of percolation. Obviously, for 
such a system the elastic constants C , , ,  Cl2 and C,, would be dependent on p .  If, 
however, L<< &, the sample spanning percolation cluster is a fractal object, then we 
expect equation (8) to break down. This is similar to scalar transport (e.g., diffusion 
and hydrodynamic dispersion) in percolation networks, in which for L<c tP, one has 
anomalous transport that cannot be described by the usual continuum diffusion or 
convective diffusion equations (see Sahimi and Imdakm [20] and references therein). 

We have also carried out Monte Carlo simulations on a cubic network with L = 20 
and have determined the elastic moduli of the network. In figure (2), we present 
Young’s modulus Y and the shear modulus p as a function of the fraction of active 
springs p .  It is clear that, contrary to Wang’s claim [13], all elastic moduli of the 
network vanish at the threshold of ordinary percolation. 

We would like to thank Jian Wang for a useful correspondence. Partial support of 
this work by the National Science Foundation Grant No CBT 8615160, and the San 
Diego Supercomputer Centre is gratefully acknowledged. 
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